Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1122568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937711

RESUMO

Introduction: The aim of the present study was to investigate the behavioral effects of the benzodiazepine midazolam in male mice, in models of anxiolysis, learning, and abuse-related effects. Methods: In a first set of experiments, male Swiss mice were submitted to the training session of a discriminative avoidance (DA) task on the elevated plus maze to evaluate anxiety-like behavior and learning after vehicle or midazolam (1, 2 or 5 mg/kg, i.g.) administration. The same animals were submitted to a conditioned place preference (CPP) protocol with midazolam (1, 2 or 5 mg/kg, i.g.). In a second experiment, outbred (Swiss) and inbred (C57BL/6) male mice were submitted to a two-bottle choice (TBC) oral midazolam drinking procedure. Animals were exposed to one sucrose bottle and one midazolam (0.008, 0.016 or 0.032 mg/ml) plus sucrose bottle. Results: Midazolam (1 and 2 mg/kg) induced anxiolytic-like effects, and all doses of midazolam prevented animals from learning to avoid the aversive closed arm during the DA training session. Assessment of midazolam reward via the CPP procedure and choice via the TBC procedure showed notable variability. A 2-step cluster analysis for the CPP data showed that midazolam data were well-fitted to 2 separate clusters (preference vs. aversion), albeit with the majority of mice showing preference (75%). Correlational and regression analyses showed no relationship between midazolam reward and anxiolytic-like effects (time spent in the open arms in the DA test) or learning/memory. Two-step cluster analysis of the TBC data also demonstrated that, regardless of strain, mice overall fell into two clusters identified as midazolam-preferring or midazolam-avoiding groups. Both midazolam preference and avoidance were concentration-dependent in a subset of mice. Discussion: Our findings show that midazolam preference is a multifactorial behavior, and is not dependent solely on the emergence of therapeutic (anxiolytic-like) effects, learning impairments, or on genetic factors (inbred vs. outbred animals).

2.
Psychopharmacology (Berl) ; 239(6): 1679-1687, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35253069

RESUMO

RATIONALE: Ayahuasca has been proposed as a potential treatment of alcohol (ethanol) use disorder (AUD). The serotonin 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT) is the main psychoactive component of ayahuasca, suggesting that its therapeutic effects may be mediated by 5-HT2A receptors. OBJECTIVES: The aim of the present study was to investigate the effects of ayahuasca on the expression of ethanol self-administration using a two-bottle choice procedure and the role of 5-HT2A receptors in those effects. METHODS: Male mice had intermittent access to ethanol (10% v/v) in a two-bottle choice procedure for 30 days. Animals were then submitted to 3 treatment phases, each followed by ethanol re-exposure tests. During the treatment phase, every 3 days, animals received i.p. injections of either vehicle or the 5-HT2A receptor antagonist M100907 (M100, 1 mg/kg) followed by an i.g. (gavage) administration of vehicle or ayahuasca (100 mg/kg) and were exposed to the self-administration apparatus with no ethanol availability. During re-exposure tests, animals were submitted to the same conditions as during acquisition, with no treatments prior to those sessions. RESULTS: Treatment with ayahuasca blocked the expression of ethanol self-administration, decreasing ethanol intake and preference during re-exposure tests. Pretreatment with M100 blocked the effects of ayahuasca on ethanol drinking without significantly attenuating ethanol self-administration. CONCLUSIONS: Treatment with ayahuasca during alcohol abstinence blocked the expression of alcohol self-administration in mice, and 5-HT2A receptor activation is critical for those effects to emerge. Our findings support a potential for ayahuasca and other 5-HT2A receptor agonists as adjunctive pharmacotherapies for the treatment of AUD.


Assuntos
Banisteriopsis , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Etanol/farmacologia , Masculino , Camundongos , N,N-Dimetiltriptamina , Receptor 5-HT2A de Serotonina , Serotonina
3.
Psychopharmacology (Berl) ; 237(11): 3269-3281, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32676773

RESUMO

RATIONALE: Accumulating evidence suggests that ayahuasca, a hallucinogenic beverage used in traditional Amazonian communities for ritualistic and curative purposes, has been associated with reduced rates of substance use disorders. However, the brain mechanisms underlying the therapeutic effects of ayahuasca have not yet been fully elucidated. OBJECTIVES: The aim of the present study was to investigate the effects of treatment with ayahuasca on the rewarding properties of the psychostimulant methylphenidate. METHODS: The rewarding properties of ayahuasca (100 mg/kg, orally) and methylphenidate (10 mg/kg, i.p.) were investigated using the conditioned place preference (CPP) model. Furthermore, we evaluated the effects of repeated treatment with ayahuasca on the reinstatement of methylphenidate-induced CPP. Fos expression was evaluated in different limbic structures (cingulate cortex-area 1, prelimbic cortex, infralimbic cortex, orbitofrontal cortex-lateral orbital area, nucleus accumbens core and shell, ventral tegmental area, dorsal striatum, and basolateral amygdala) upon each experimental phase. RESULTS: Both ayahuasca and methylphenidate induced CPP in mice. However, ayahuasca had limited effects on Fos expression, while methylphenidate altered Fos expression in several brain regions associated with the behavioral effects of drugs of abuse. Treatment with ayahuasca after conditioning with methylphenidate blocked the reinstatement of methylphenidate-induced CPP. Those behavioral effects were accompanied by changes in Fos expression patterns, with ayahuasca generally blocking the changes in Fos expression induced by conditioning with methylphenidate and/or reexposure to methylphenidate. CONCLUSIONS: Our findings suggest that ayahuasca restored normal brain function in areas associated with the long-term expression of drug wanting/seeking in animals conditioned to methylphenidate.


Assuntos
Banisteriopsis , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Metilfenidato/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/biossíntese , Administração Oral , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Expressão Gênica , Alucinógenos/administração & dosagem , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/genética
4.
Front Pharmacol ; 9: 561, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896106

RESUMO

Ayahuasca is a hallucinogenic beverage produced from the decoction of Banisteriopsis caapi (Bc) and Psychotria viridis (Pv), ß-carboline- and N,N-dimethyltryptamine(DMT)-containing plants, respectively. Accumulating evidence suggests that ayahuasca may have therapeutic effects on ethanol abuse. It is not known, however, whether its effects are dependent on the presence of DMT or if non-DMT-containing components would have therapeutic effects. The aim of the present study was to investigate the rewarding properties of ayahuasca (30, 100, and 300 mg/kg, orally), Bc (132, 440, and 1320 mg/kg, orally) and Pv (3.75, 12.5 and 37.5 mg/kg, i.p.) extracts and their effects on ethanol (1.8 g/kg, i.p.) reward using the conditioned place preference (CPP) paradigm in male mice. Animals were conditioned with ayahuasca, Bc or Pv extracts during 8 sessions. An intermediate, but not a high, dose of ayahuasca induced CPP in mice. Bc and Pv did not induce CPP. Subsequently, the effects of those extracts were tested on the development of ethanol-induced CPP. Ayahuasca, Bc or Pv were administered before ethanol injections during conditioning sessions. While Bc and Pv exerted no effects on ethanol-induced CPP, pretreatment with ayahuasca blocked the development of CPP to ethanol. Finally, the effects of a post-ethanol-conditioning treatment with ayahuasca, Bc or Pv on the expression of ethanol-induced CPP were tested. Animals were conditioned with ethanol, and subsequently treated with either ayahuasca, Bc or Pv in the CPP environment previously associated with saline or ethanol for 6 days. Animals were then reexposed to ethanol and ethanol-induced CPP was quantified on the following day. Treatment with all compounds in the ethanol-paired environment blocked the expression of ethanol-induced CPP. Administration of an intermediate, but not a high, dose of ayahuasca and Bc, as well as Pv administration, in the saline-paired compartment blocked the expression of ethanol-induced CPP. The present study sheds light into the components underlying the therapeutic effects of ayahuasca on ethanol abuse, indicating that ayahuasca and its plant components can decrease ethanol reward at doses that do not exert abuse liability. Importantly, the treatment environment seems to influence the therapeutic effects of ayahuasca and Bc, providing important insights into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...